
Permission to make digital or hard copies of part or all of this work for personal or classroom use is 
granted without fee provided that copies are not made or distributed for commercial advantage and that 
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the Owner/Author. 
SIGGRAPH 2013, July 21 – 25, 2013, Anaheim, California. 
2013 Copyright held by the Owner/Author. 
ACM 978-1-4503-2261-4/13/07 

Cost-based Workload Balancing for Ray Tracing on Multi-GPU Systems

Mario Rincón-Nigro∗ Zhigang Deng†

University of Houston

Keywords: Ray Tracing, Workload Balancing, Multi-GPU Com-
puting

1 Introduction

Ray tracing is at the core of most techniques for creating realistic
imagery. Parallel implementations of ray tracing handle the irregu-
lar workload through task systems. The strengths of static and dy-
namic scheduling strategies are complementary to each other. Static
strategies do not incur in synchronization overhead while dynamic
strategies generally provide computational times closer to the op-
timal scheduling. Hybrid strategies combining good static initial-
ization and dynamic task assignation have been shown to be a bet-
ter alternative than pure static and dynamic strategies [Heirich and
Arvo 1998]. We experiment with a novel strategy for load balancing
on multi-GPU systems. We obtain a quick estimate of the cost of
traversing batches of rays over bounding volume hierarchies. The
estimated costs are used to achieve a tighter assignation of tasks to
processing units. Results suggest that cost-based initialization can
enhance common balancing strategies and reduce rendering times.

2 Our Approach

We estimate the cost of processing each task by performing a
reduced traversal of the rays over bounding volume hierarchies
(BVHs). The reduced traversal of a ray does not return ray hits,
but the number of primitive intersection tests (i.e. boxes and tri-
angles) that need to be performed in order to compute the hit, and
can be performed faster than a full trace operation. This works as
current high performance implementations of ray tracing on GPUs
(e.g., [Aila and Laine 2009]) rely on texture memory for caching
BVH nodes during ray traversals. Triangle primitives on the other
hand are not cached, for these are not requested nearly as often as
the subset of nodes that were recently traversed. Performing the re-
duced traversal for every ray within a task results in excessive over-
head, however. We reduce the estimation overhead by sampling the
tasks. Coherent rays are sampled over a Z-curve, and diffuse rays
are randomly sampled. Enhanced initialization of the tasks system
can then be achieved by enforcing a scheduling in which the re-
maining task with the largest cost is assigned to the GPU with the
least amount of work.

3 Results

The time taken by the reduced traversal was measured to be 42.5%
and 43.5% of the full trace operation on a NVidia Tesla C1060
GPU, for coherent and diffuse rays, respectively. We empirically
found that sampling 12.5% of rays results in overheads of 3.2%
and 4.1% of the full trace operation, and estimation errors of 3.2%
and 4.1%, for coherent and diffuse rays, respectively. Figure 1
shows the effect on the overall tracing times of using the estimated
costs for initializing a static distributed queue, and a centralized
queue. Experiments were performed on an AMAX machine with
a Xeon E5520 processor, 8GB of RAM memory, and 3 NVIDIA
Tesla C1060 GPUs. Our implementation of the centralized multi-

∗e-mail:mario.rincon.nigro@gmail.com
†e-mail:zdeng@cs.uh.edu.com

GPU queue involves one kernel launch for each task in order to
synchronize the GPUs. The best tracing times were measured for
the static distribution with cost initialization. Intuitively one would
expect the centralized queue to outperform the static strategy, but
current general purpose GPU programing frameworks (e.g. CUDA
and OpenCL) do not provide direct ways to avoid the kernel inter-
ruption required for synchronization between units.

512 4096 16384
0

20

40

60

Task size

M
R

a
y
s
/s

e
c

Backyard

512 4096 16384
0

20

40

Task size

M
R

a
y
s
/s

e
c

Mini

 

 

Stat − Cohe Stat− Diff Cent − Cohe Cent − Diff

Figure 1: Tracing times for cost-initializated (colored bars), and
regular versions (background bars) of a static distributed queues
task system and a centralized queue task system for various task
sizes and two scenes (Backyard, 213802 tris; Mini, 234443 tris).

4 Future Work

Global memory accesses are the bottleneck in current high per-
formance GPU tracers. The reduced traversal for cost estimation
works by taking advantage of this shortcoming. A more general
approach for cost estimation needs to be investigated for use within
parallel platforms other than current multi-GPU systems. Addi-
tionally, efficient synchronization mechanisms for the centralized
queue in multi-GPU systems should be investigated for a complete
evaluation.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency
of ray traversal on GPUs. In Proc. High-Performance Graphics
2009, 145–149.

HEIRICH, A., AND ARVO, J. 1998. A competitive analysis of
load balancing strategies for parallel ray tracing. The Journal of
Supercomputing 12, 1-2, 57–68.


